Package com.mxgraph.analysis

Source Code of com.mxgraph.analysis.mxGraphAnalysis

/*
* $Id: mxGraphAnalysis.java,v 1.3 2009-11-24 12:00:28 gaudenz Exp $
* Copyright (c) 2001-2005, Gaudenz Alder
*
* All rights reserved.
*
* This file is licensed under the JGraph software license, a copy of which
* will have been provided to you in the file LICENSE at the root of your
* installation directory. If you are unable to locate this file please
* contact JGraph sales for another copy.
*/
package com.mxgraph.analysis;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.Hashtable;
import java.util.List;

import com.mxgraph.view.mxCellState;
import com.mxgraph.view.mxGraph;
import com.mxgraph.view.mxGraphView;

/**
* A singleton class that provides algorithms for graphs. Assume these
* variables for the following examples:<br>
* <code>
* mxICostFunction cf = mxDistanceCostFunction();
* Object[] v = graph.getChildVertices(graph.getDefaultParent());
* Object[] e = graph.getChildEdges(graph.getDefaultParent());
* mxGraphAnalysis mga = mxGraphAnalysis.getInstance();
* </code>
*
* <h3>Shortest Path (Dijkstra)</h3>
*
* For example, to find the shortest path between the first and the second
* selected cell in a graph use the following code: <br>
* <br>
* <code>Object[] path = mga.getShortestPath(graph, from, to, cf, v.length, true);</code>
*
* <h3>Minimum Spanning Tree</h3>
*
* This algorithm finds the set of edges with the minimal length that connect
* all vertices. This algorithm can be used as follows:
* <h5>Prim</h5>
* <code>mga.getMinimumSpanningTree(graph, v, cf, true))</code>
* <h5>Kruskal</h5>
* <code>mga.getMinimumSpanningTree(graph, v, e, cf))</code>
*
* <h3>Connection Components</h3>
*
* The union find may be used as follows to determine whether two cells are
* connected: <code>boolean connected = uf.differ(vertex1, vertex2)</code>.
*
* @see mxICostFunction
*/
public class mxGraphAnalysis
{

  /**
   * Holds the shared instance of this class.
   */
  protected static mxGraphAnalysis instance = new mxGraphAnalysis();

  /**
   *
   */
  protected mxGraphAnalysis()
  {
    // empty
  }

  /**
   * @return Returns the sharedInstance.
   */
  public static mxGraphAnalysis getInstance()
  {
    return instance;
  }

  /**
   * Sets the shared instance of this class.
   *
   * @param instance The instance to set.
   */
  public static void setInstance(mxGraphAnalysis instance)
  {
    mxGraphAnalysis.instance = instance;
  }

  /**
   * Returns the shortest path between two cells or their descendants
   * represented as an array of edges in order of traversal. <br>
   * This implementation is based on the Dijkstra algorithm.
   *
   * @param graph The object that defines the graph structure
   * @param from The source cell.
   * @param to The target cell (aka sink).
   * @param cf The cost function that defines the edge length.
   * @param steps The maximum number of edges to traverse.
   * @param directed If edge directions should be taken into account.
   * @return Returns the shortest path as an alternating array of vertices
   * and edges, starting with <code>from</code> and ending with
   * <code>to</code>.
   *
   * @see #createPriorityQueue()
   */
  public Object[] getShortestPath(mxGraph graph, Object from, Object to,
      mxICostFunction cf, int steps, boolean directed)
  {
    // Sets up a pqueue and a hashtable to store the predecessor for each
    // cell in tha graph traversal. The pqueue is initialized
    // with the from element at prio 0.
    mxGraphView view = graph.getView();
    mxFibonacciHeap q = createPriorityQueue();
    Hashtable<Object, Object> pred = new Hashtable<Object, Object>();
    q.decreaseKey(q.getNode(from, true), 0); // Inserts automatically

    // The main loop of the dijkstra algorithm is based on the pqueue being
    // updated with the actual shortest distance to the source vertex.
    for (int j = 0; j < steps; j++)
    {
      mxFibonacciHeap.Node node = q.removeMin();
      double prio = node.getKey();
      Object obj = node.getUserObject();

      // Exits the loop if the target node or vertex has been reached
      if (obj == to)
      {
        break;
      }

      // Gets all outgoing edges of the closest cell to the source
      Object[] e = (directed) ? graph.getOutgoingEdges(obj) : graph
          .getConnections(obj);

      if (e != null)
      {
        for (int i = 0; i < e.length; i++)
        {
          Object[] opp = graph.getOpposites(new Object[] { e[i] },
              obj);

          if (opp != null && opp.length > 0)
          {
            Object neighbour = opp[0];

            // Updates the priority in the pqueue for the opposite node
            // to be the distance of this step plus the cost to
            // traverese the edge to the neighbour. Note that the
            // priority queue will make sure that in the next step the
            // node with the smallest prio will be traversed.
            if (neighbour != null && neighbour != obj
                && neighbour != from)
            {
              double newPrio = prio
                  + ((cf != null) ? cf.getCost(view
                      .getState(e[i])) : 1);
              node = q.getNode(neighbour, true);
              double oldPrio = node.getKey();

              if (newPrio < oldPrio)
              {
                pred.put(neighbour, e[i]);
                q.decreaseKey(node, newPrio);
              }
            }
          }
        }
      }

      if (q.isEmpty())
      {
        break;
      }
    }

    // Constructs a path array by walking backwards through the predessecor
    // map and filling up a list of edges, which is subsequently returned.
    ArrayList<Object> list = new ArrayList<Object>(2 * steps);
    Object obj = to;
    Object edge = pred.get(obj);

    if (edge != null)
    {
      list.add(obj);

      while (edge != null)
      {
        list.add(0, edge);

        boolean isSource = view.getVisibleTerminal(edge, true) == obj;
        obj = view.getVisibleTerminal(edge, !isSource);
        list.add(0, obj);

        edge = pred.get(obj);
      }
    }

    return list.toArray();
  }

  /**
   * Returns the minimum spanning tree (MST) for the graph defined by G=(E,V).
   * The MST is defined as the set of all vertices with minimal lengths that
   * forms no cycles in G.<br>
   * This implementation is based on the algorihm by Prim-Jarnik. It uses
   * O(|E|+|V|log|V|) time when used with a Fibonacci heap and a graph whith a
   * double linked-list datastructure, as is the case with the default
   * implementation.
   *
   * @param graph
   *            the object that describes the graph
   * @param v
   *            the vertices of the graph
   * @param cf
   *            the cost function that defines the edge length
   *
   * @return Returns the MST as an array of edges
   *
   * @see #createPriorityQueue()
   */
  public Object[] getMinimumSpanningTree(mxGraph graph, Object[] v,
      mxICostFunction cf, boolean directed)
  {
    ArrayList<Object> mst = new ArrayList<Object>(v.length);

    // Sets up a pqueue and a hashtable to store the predecessor for each
    // cell in tha graph traversal. The pqueue is initialized
    // with the from element at prio 0.
    mxFibonacciHeap q = createPriorityQueue();
    Hashtable<Object, Object> pred = new Hashtable<Object, Object>();
    Object u = v[0];
    q.decreaseKey(q.getNode(u, true), 0);

    for (int i = 1; i < v.length; i++)
    {
      q.getNode(v[i], true);
    }

    // The main loop of the dijkstra algorithm is based on the pqueue being
    // updated with the actual shortest distance to the source vertex.
    while (!q.isEmpty())
    {
      mxFibonacciHeap.Node node = q.removeMin();
      u = node.getUserObject();
      Object edge = pred.get(u);

      if (edge != null)
      {
        mst.add(edge);
      }

      // Gets all outgoing edges of the closest cell to the source
      Object[] e = (directed) ? graph.getOutgoingEdges(u) : graph
          .getConnections(u);
      Object[] opp = graph.getOpposites(e, u);

      if (e != null)
      {
        for (int i = 0; i < e.length; i++)
        {
          Object neighbour = opp[i];

          // Updates the priority in the pqueue for the opposite node
          // to be the distance of this step plus the cost to
          // traverese the edge to the neighbour. Note that the
          // priority queue will make sure that in the next step the
          // node with the smallest prio will be traversed.
          if (neighbour != null && neighbour != u)
          {
            node = q.getNode(neighbour, false);

            if (node != null)
            {
              double newPrio = cf.getCost(graph.getView()
                  .getState(e[i]));
              double oldPrio = node.getKey();

              if (newPrio < oldPrio)
              {
                pred.put(neighbour, e[i]);
                q.decreaseKey(node, newPrio);
              }
            }
          }
        }
      }
    }

    return mst.toArray();
  }

  /**
   * Returns the minimum spanning tree (MST) for the graph defined by G=(E,V).
   * The MST is defined as the set of all vertices with minimal lenths that
   * forms no cycles in G.<br>
   * This implementation is based on the algorihm by Kruskal. It uses
   * O(|E|log|E|)=O(|E|log|V|) time for sorting the edges, O(|V|) create sets,
   * O(|E|) find and O(|V|) union calls on the union find structure, thus
   * yielding no more than O(|E|log|V|) steps. For a faster implementatin
   *
   * @see #getMinimumSpanningTree(mxGraph, Object[], mxICostFunction,
   *      boolean)
   *
   * @param graph The object that contains the graph.
   * @param v The vertices of the graph.
   * @param e The edges of the graph.
   * @param cf The cost function that defines the edge length.
   *
   * @return Returns the MST as an array of edges.
   *
   * @see #createUnionFind(Object[])
   */
  public Object[] getMinimumSpanningTree(mxGraph graph, Object[] v,
      Object[] e, mxICostFunction cf)
  {
    // Sorts all edges according to their lengths, then creates a union
    // find structure for all vertices. Then walks through all edges by
    // increasing length and tries adding to the MST. Only edges are added
    // that do not form cycles in the graph, that is, where the source
    // and target are in different sets in the union find structure.
    // Whenever an edge is added to the MST, the two different sets are
    // unified.
    mxGraphView view = graph.getView();
    mxUnionFind uf = createUnionFind(v);
    ArrayList<Object> result = new ArrayList<Object>(e.length);
    mxCellState[] edgeStates = sort(view.getCellStates(e), cf);

    for (int i = 0; i < edgeStates.length; i++)
    {
      Object edge = edgeStates[i].getCell();

      Object source = view.getVisibleTerminal(edge, true);
      Object target = view.getVisibleTerminal(edge, false);

      mxUnionFind.Node setA = uf.find(uf.getNode(source));
      mxUnionFind.Node setB = uf.find(uf.getNode(target));

      if (setA == null || setB == null || setA != setB)
      {
        uf.union(setA, setB);
        result.add(edge);
      }
    }

    return result.toArray();
  }

  /**
   * Returns a union find structure representing the connection components of
   * G=(E,V).
   *
   * @param graph The object that contains the graph.
   * @param v The vertices of the graph.
   * @param e The edges of the graph.
   * @return Returns the connection components in G=(E,V)
   *
   * @see #createUnionFind(Object[])
   */
  public mxUnionFind getConnectionComponents(mxGraph graph, Object[] v,
      Object[] e)
  {
    mxGraphView view = graph.getView();
    mxUnionFind uf = createUnionFind(v);

    for (int i = 0; i < e.length; i++)
    {
      Object source = view.getVisibleTerminal(e[i], true);
      Object target = view.getVisibleTerminal(e[i], false);

      uf.union(uf.find(uf.getNode(source)), uf.find(uf.getNode(target)));
    }

    return uf;
  }

  /**
   * Returns a sorted set for <code>cells</code> with respect to
   * <code>cf</code>.
   *
   * @param states
   *            the cell states to sort
   * @param cf
   *            the cost function that defines the order
   *
   * @return Returns an ordered set of <code>cells</code> wrt.
   *         <code>cf</code>
   */
  public mxCellState[] sort(mxCellState[] states, final mxICostFunction cf)
  {
    List<mxCellState> result = Arrays.asList(states);

    Collections.sort(result, new Comparator<mxCellState>()
    {

      /**
       *
       */
      public int compare(mxCellState o1, mxCellState o2)
      {
        Double d1 = new Double(cf.getCost(o1));
        Double d2 = new Double(cf.getCost(o2));

        return d1.compareTo(d2);
      }

    });

    return (mxCellState[]) result.toArray();
  }

  /**
   * Returns the sum of all cost for <code>cells</code> with respect to
   * <code>cf</code>.
   *
   * @param states
   *            the cell states to use for the sum
   * @param cf
   *            the cost function that defines the costs
   *
   * @return Returns the sum of all cell cost
   */
  public double sum(mxCellState[] states, mxICostFunction cf)
  {
    double sum = 0;

    for (int i = 0; i < states.length; i++)
    {
      sum += cf.getCost(states[i]);
    }

    return sum;
  }

  /**
   * Hook for subclassers to provide a custom union find structure.
   *
   * @param v
   *            the array of all elements
   *
   * @return Returns a union find structure for <code>v</code>
   */
  protected mxUnionFind createUnionFind(Object[] v)
  {
    return new mxUnionFind(v);
  }

  /**
   * Hook for subclassers to provide a custom fibonacci heap.
   */
  protected mxFibonacciHeap createPriorityQueue()
  {
    return new mxFibonacciHeap();
  }

}
TOP

Related Classes of com.mxgraph.analysis.mxGraphAnalysis

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.